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SUMMARY

This is the first of two volumes dealing with the prediction

of the dynamic thermal behavior of compact heat exchangers. This

volume contains a presentation of the analytical methods derived

for calculating the transient performance. The second volume provides

a complete description of the digital-computer program (Program

KRONOS) developed on the basis of these methods.

Models representing the transient heat-transfer processes

occurring in compact heat exchangers of the plate-fin variety have

been developed for single-phase and condensing fluids. Based on the

assumed heat-transfer models, the differential equations governing

the transient thermal performance have been derived for parallel-flow,

counterflow, and multipass-crossflow configurations. An iterative

finite-difference procedure has been developed for the 
solution of

these governing equations. This procedure can be used to compute

the variation of outlet conditions with time for each fluid in a

given exchanger for specified initial temperature distributions and

prescribed variations in inlet conditions and flow rate. The over-

all method developed for analyzing the transient behavior has proved

quite effective in treating the types of compact heat exchangers

most often encountered in aerospace applications.



INTRODUCTION

Backqround

A compact heat exchanger is seldom considered as a separate

and distinct unit, but is instead always an integral part of a

larger system. As such, it is often an important factor in determining

the performance of the over-all system. In many aerospace applications,

it is necessary to investigate the dynamic behavior of systems con-

taining one or more heat exchangers where the characteristics of the

heat exchangers significantly affect the over-all transient response

to changes in the operating variables. In these instances, a reliable

method of predicting the performance of a heat exchanger under

transient conditions is required.

Models representing the transient heat-transfer processes

occurring in compact heat exchangers of the plate-fin variety have

been developed for two different categories of working fluids--common

single-phase fluids and condensing fluids; the latter category consists

of both single-component fluids and two-component fluids (for

example, humid air) in which only the less vo-latile component con-

denses. No attempt has been made to consider two-phase boiling fluids,

since this would introduce more complication than appears worthwhile

at the present time in view of the approximate nature of the boiling

heat-transfer data available. The models developed include the

effect of the thermal capacitance of the side walls, which make up

the outer shell separating the heat-exchanger core from the environ-

ment (see sketches included in the Nomenclature), on the transient re-

sponse. This effect can be important, although it is usually

neglected in more approximate treatments of the dynamic behavior of

heat exchangers.

The differential equations governing the transient thermal

performance have been derived, on the basis of the assumed heat-

transfer models, for the heat-exchanger configurations most often

encountered in aerospace systems; that is, paraliel-flow, counterflow,
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and multipass-crossflow arrangements of plate-fin matrices (heat-

transfer surfaces). A procedure for solving the governing differential

equations has been developed and incorporated into a digital-computer

program (Program KRONOS) to facilitate the calculations involved in

determining the transient thermal performance of a specified heat-

exchanger configuration. The program can be used to calculate the

variations of pressure drop and outlet conditions with time for

given initial conditions and prescribed time variations in inlet

temperature (and absolute humidity or vapor quality for a condensing

fluid) and flow rate of both streams. The initial conditions are

defined as the temperature (and vapor quality for a single-component

condensing fluid) distributions in the exchanger immediately prior

to the initiation of the transient. These can correspond to either

a start-up or a steady-state condition.

Method of Attack

A fairly complete description and literature review of the

currently available methods of heat-exchanger transient analysis

are given in Chapter VII and Apendix IV of Reference 1. Closed-

form solutions of the transient equations for parallel-flow and counter-

flow exchangers are presented in the literature. These solutions

are quite complicated and difficult to use for practical calculations

despite the fact that they involve a variety of approximations

(such as, assuming constant fluid properties and heat-transfer co-

efficients) in order to obtain the closed-form relations. There are

no methods available for treating multipass-crossflow exchangers.

The few results reported in the literature for single-pass crossflow

are for the most part confined to a fairly narrow range of conditions.

The majority of these procedures for any type of flow configuration

are limited to cases where there is a step change in the inlet

temperature or flow rate of one of the fluids in the exchanger.

Since both the temperature and flow rate can change simultaneously,

the procedures as they currently stand would have to be modified,



further increasing their complexity.

The analytical procedure chosen here for the calculation

of the transient performance basically consists of a direct numerical

solution of the governing differential equations for the types of

working fluids and flow arrangements described previously. The

approach used involves expressing the partial derivatives with

respect to time in finite-difference form in the differential equations

representing the heat-transfer processes occurring at any time ( ).

For the case of single-phase fluids, this leads to a set of differential

equations in which the only derivatives are those of the fluid

temperatures with respect to flow length on both sides. By sub-

stitution, the number of equations in the set is reduced to two,

one for each side of the exchanger. The two final working equations

contain as the only independent variables: the spatial, derivatives

of the fluid temperatures, the local fluid temperatures at the

current time ( ' ) and at the preceding time (6 0= -9a ), and

the local metal temperatures (of the separat.ing wal and side walls)

at the preceding time.

As part of the problem statement for any particular case,

the temperature distributions throughout the exchanger at the start

of the transient, g BO , are either given (start-up initial

conditions) or are calculated from specified information (steady-

state initial conditions). In addition, the inlet temperature of

each fluid is prescribed as a function of time (boundary conditions).

With this information, the two working eq-:ations are solved simul-

taneousv to obtain the distributions cf f; 'id temperature at each

vaiLe of tim-e 9 ) dsireo, Tris is ac::csp:iseci v i negq'ati -

nurn::-iia tihe d i fere,.za eq Cic:: : : c dc - fi'do The

integration for each fluid is performed with respect to distance

along its flow length f:cm the inlet to the ct 'et. The solution

procedure fcr each time 9 is iterative, due to the selected form

of the equations and the desirability of alIcwirg the fluid properties

ard heat-transfer coefficients to vary wi-h terperature, Once the



fluid-temperature distributions at time e have been obtained, the

corresponding metal temperatures are computed in a straightforward

fashion using the pertinent equations from the original set. This

procedure is carried out for each desired value 
of 9 , starting

at e9=0 and proceeding in a stepwise manner in increments of

nA until the desired time interval has elapsed. The method

used in cases where one of the fluids is condensing is essentially

the same as described here with minor variations 
in detail.

Report Arrangement

This report consists of two volumes. This first volume

contains a presentation and discussion of the 
analytical methods

and procedures on which the computer program 
is based. Volume II

provides a complete description of the computer 
program, Program

KRONOS.

The next section of this volume contains a presentation 
of

the differential equations governing the transient.heat-transfer

processes. This is followed by a section in which the procedure

for solving the governing equations and'computing 
the transient

performance is described. The last section of the main body contains

a number of conclusions and recommendations related to the work

described in this report. Finally, the pertinent details related

to the derivations of the governing equations and solution procedure

are presented in several appendices.



GOVERNING EQUATIONS

This section of the report discusses the differential

equations governing the transient heat-transfer processes occurring

in compact heat exchangers of the type described in the previous

section. The discussion begins with a presentation of the limiting

assumptions made in deriving the equations. This is followed by a

description of the manner in which the heat exchanger is modeled

for purposes of analysis. Next, the governing equations are presented

for the various flow arrangements and fluid types considered. Finally,

the initial and boundary conditions which must be specified in order

-to solve the system of equations are presented and discussed.

Limiting Assumptions

The derivations of the relations presented here involve a

number of simplifying assumptions made in order to obtain a system

of equatidon ' ilM-ch can be solved in a practical and efficient manner.

The major assumptions are listed as follows:

I. The heat exchanger is adiabatic. This implies that the

exchanger is thermally insulated from the outside

surroundings and all of the heat transfer occurring takes

,a place within its boundaries.

2. Longitudinal conduction is negligible in both the

fluids and the exchanger structure.

3. There is no scale deposition on any of the walls and

the wall resistances themselves are negligible compared

to the convective heat-transfer resistances.

4. The fluid temperature within each passage is constant

in the nonflow directions.

5. The temperatures vary only in the flow directions.

This means that, for parallel-flow and counterflow

arrangements, the temperatures are functions of a single

spatial coordinate ( x ) and, for multipass crossflow,

they are functions of the two spatial coordinates of



the flow plane (X and d" ).

6. There is no lateral mixing in either of the two fluids.

7. The pressure of a condensing fluid is constant throughout

the exchanger. This does not affect the accuracy of

the relations to any great extent, since for a condensing

fluid the pressure drop due to friction is somewhat

compensated for by the pressure rise due to the density

change associated with the process of condensation.

8. If condensation occurs, there is no accumulation of

moisture in the heat exchanger; that is, the total

mass flow rate leaving the exchanger is equal to

that entering it at any point in time.

A number of additional assumptions are made in deriving

the relations for a two-component fluid in which the less volatile

component condenses (wet gas):

9. Liquid-vapor phase equilibrium exists at each point

in the exchanger where liquid exists. This means that

at any position in the exchanger where the fluid temper-

ature is below the dew point, the fluid is saturated, such

that the enthalpy and absolute humidity of the stream

are both functions of temperature only.

10. All of the condensation occurs on the walls.

11. The heat capacity of the liquid film on the walls is

negligible compared to the heat capacity of the walls

themselves.

12. The heat-transfer coefficient, b , is the same as

would be obtained for a single-phase fluid.

Representation of Heat Exchanaer

For purposes of transient analysis, a heat exchanger can

be considered to consist of a number of general differential ele-

ments such as shown schematically in the sketch on the following page.
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Ursrilxdy/L Ly)
Side Wall 7777U77y/L

Fr 1i td -Ur,(dC y/LXLy)

Separating Wall US (cxdy/LX Ly)

a Fluid UwT,sw(dxdy/L yL)
7,-, C

Side Wall "

Differential Element of Heat Exchanger

In all cases, one of the fluids (designated arbitrarily

as the s fluid) must be single-phase throughout. The other fluid

in the exchanger (designated as the r fluid) can be single-phase

throughout, a single-component condensing fluid, or a two-component

fluid from which the less volatile component is condensing (wet gas).

For multipass-crossflow configurations, the s fluid must be the one

which is turned between passes. This eliminates the possibility of

turning the two-phase fluid, if there is one. One reason for this

restriction is that there are no methods available for calculating

the pressure drop associated with turning a two-phase fluid. Another

and more important reason is that the turning may cause flow dis-

tortions due to the centrifuging of the liquid component which

cannot be accounted for adequately in the analysis.

In the sketch of the differential element, the quantities,

W, and W 5  , are the inventories of the two fluids in the

heat exchanger, W=PVvo0j , where /0 is the local fluid

density and Vvoi is the total void volume on one side of the



heat exchanger. The terms w , Csw , , and Csw,

are the heat capacitances of the walls, each defined as the product

of the specific heat and mass of the metal. The expressions for

calculating Vvo i1 and C are presented in Appendix I along

with the relations for computing other pertinent geometric properties

of,the heat-exchanger core. The variable, UT , represents the

total thermal conductance for heat transfer between each fluid and

the metal surfaces over which it flows; for example, U ~ ,Tro.v Ar is

the conductance for heat transfer between the r fluid and the

separating wall and the fins on the r side attached to it. The

conductances for each fluid are functions of the heat-transfer

coefficient, surface area, and surface efficiency corresponding

to that fluid. The procedures and relations .involved in determining

these quantities for the various types of fluids are discussed in

Appendix II.

Transient Differential Equations

The equations are presented below for the three different

cases corresponding to the different types of fluids. A set of

five simultaneous differential equations is obtained for each case..

These equations are derived by taking an energy balance for each

component of the general differential element represented in the

preceding sketch. For all flow arrangements, the flow direction of

the r fluid is along the positive X direction of the flow plane

(see sketches included with the Nomenclature). The flow direction

of the s fluid is along the positive X direction for parallel flow,

along the negative X direction for counterflow, and along the positive

y direction for multipass crossflow.
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Single-Phase Fluids on Both Sides

An energy balance on the r fluid in the element gives the

following equation for all flow arrangements,

Y VLy

C xs

(1)

c s) d~dy: -T-l c - !y

+ TxTsI A xAy y

d .((2)

where the upper sign is for parallel flow and the lower is for
counterflow. The energy balance on the s fluid for multipass

crossf low gives,

c ' -y , dxJy

S (T,-t s) x + (x s)W, s -T) xd y

(3)



Three additional equations can be written for all flow

arrangements from an energy balance on 
the separating wall and the

two side walls:

(4)

SdY= Ur, sw (Tr Tsw,r) ddy

L 1Ly) LLy

(5)

.W Ur, STS j,

(6)

The preceding relations can be simplified 
to give the following

set of five differential equations:

rc =T(Yc,) L+ Uy, (T-Tr)+ Tsw(Tsw,v-Tr

(7)

c -3 wU L 5  + U (Tw-Ts)+ UT, sw, s (Ts w, -Ts)

(8)

WU T, (T -W) 4 UTs(S T7W)

(9)

(10)
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W- 5 T, W, T

(11)

where for parallel flow,

LSE Lx
(12)

for counterflow

L5 L x

(13)

and for multipass crossflow,

L S Np Ly

(14)

This is the final system of differential equations which must be

solved simultaneously to compute the transient performance of the

heat exchanger.

Sinqle,-onmprnent Condensing Fluid on r Side

For this case, an additional quantity, the vapor quality

)XVZ , must be considered. The idealized temperature and quality

distributions of the condensing r fluid at any time will be of the

form shown in the sketch on the following page.
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vr
1.0

o.o L .

I I
Superheated--i<- Saturated Vapor-Liquid Subcooled

Vapor Mixture Liquid

x LX

Idealized Temperature and Quality Distributions

-n general, as canrl be seen from the above sketch, the heat exchanger

involves three regions--two single-phase regions, where the r fluid

is either a superheated vapor or a subcooled liquid, a-d one two-phase

condensing region, where the r fluid is a mixture of saturated vapor

and liquid. The equations which pertain and must be solved at any

point depend on whether the region in which the point is located



is single-phase or two-phase.

The-only equation which is affected by the fact that the

r fluid is condensing is the one obtained from an energy balance

on this fluid. This equation can be written in general terms as,

y = -- - y ) y- (T -

where Hr is the enthalpy per unit mass of the r fluid.

In each of the two single-phase regions, the vapor quality

is constant and equal to either 1.0 of 0.0, depending on whether the

fluid temperature is above (superheated vapor) or below (subcooled

liquid) the saturation temperature, .TSct . The enthalpy of the r

fluid in these regions can be expressed as,

HY C ,rT

where Cp,r is the specific heat corresponding to either vapor

or liquid. As would be expected, Equation 15 reduces to the same

expression as that obtained for the case of single-phase fluids on

both sides (Equation 7). Therefore, the set of differential equations

which must be solved consists of Equations 7 through 11.

In the two-phase region, the temperature of the r fluid is

constant and equal to the saturation temperature. The enthalpy here

can be expressed as

r= hr: , sa vr

Substituting this definition of Hr into Equation 15 and simplifying

the resulting expression, gives the differential equation governing

the vapor-quality distribution:



(w,/, rLX + U"'T, ) kVU r (T T)

(16)

The set of differential equations which must be solved in the two-

phase region then consists of Equation 16 and Equations 8 through 11.

Wet Gas on r Side

For this case, the r fluid is considered to consist of two

components--a noncondensing gas component (which can be a mixture of

gases, for example, air) and a vapor component which partially condenses

out of the stream in traversing the heat exchanger. Three of the

equations obtained by consideration of the differential element are

affected by the fact that the r fluid is a wet gas. These are the ones

determined from energy balances on the r fluid, the separating wail,

and the side wall in contact with the r fluid.

The derivations of the pertinent relations for this case

are presented and discussed in Appendix Ill. The results of these

derivations are the following differential equations:

cC-) .,, ) L+UT(T Tr)+Ur ,r(T,y-Ty)

(17)

Cw U , (T -T,) + Urs ( Tw)

(18)
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_. ,.- U.Swir(Tr -TWr-IVFvw -A/ +W -

(19)

whe.0

cp, . cp,r + pr C v,r

(20)

and NV , defined as the fraction of the total condensation

rate occurring on the-separating wall, is approximated as,

-LJT, T- Tr

... ' L) T Tr w , I r,, Tr Tsw,rI

(21)

By reason of the assumptions given on pages 6 through 7, the

humidity and derivative of humidity with temperature appearing in

the above expressions are known functions of only the fluid

temperature. Therefore, the independent variables whose values are

to be determined are the same as for the case of a single-phase r

fluid; that is, Tr , T , T , Tswr , and Tsw,s The

set of differential equations which must be solved for these variables

then consists of Equations 17 through 19 and Equations 8 and 11.

Information Required for Solution of Equations

In order to solve the set of differential equations and

compute the transient performance for any particular case, a variety

of data must be specified. First of all, the physical boundaries
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(dimensions) of the heat exchanger must be specified, along with the

thermophysical properties of the two fluids and the geometric properties

of the heat-transfer surfaces and exchanger structure. The remaining

information required involves the specification of two sets of conditions.

These come under the categories of initial and boundary conditions.

Initial Conditions

These correspond to the distributions of fluid and metal

temperature throughout the exchanger at the start of the transient

( = O ). There is a choice of two initial temperature dis-

tributions corresponding to either a start-up or a steady-state

situation.

For the case of start-up, the initial temperature of the

metal throughout the exchanger is constant and equal to the temperature

prevailing immediately prior to introducing the two fluids. The initial

temperature distribution of each fluid is also constant and is taken

as equal to the specified inlet temperature of the fluid at the start

of the transient. The inlet temperatures of both fluids at 0 =0

will usually be specified to be equal to the given metal temperature;

this is equivalent to assuming that the heat exchanger is initially

filled with both fluids and is in thermal equilibrium.

Initial conditions corresponding to steady-state refer

to a situation where the heat exchanger undergoes a transient change

in operating conditions during steady-state operation. 
For this

case, the initial steady-state temperature distributions are obtained

by setting equal to zero all of the derivatives with respect to time

in the differential equations. The resulting set of equations is then

solved in the same manner as for the transient calculations. The

distributions calculated in this fashion correspond to the steady-

state conditions prevailing immediately prior to the initiation of

the transient.
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Boundary Conditions

The information which must be supplied consists of the

inlet conditions and flow rate of each fluid as functions of time. The

fluid inlet condi.tions which must be specified consist of the temperature

and, for a condensing fluid, vapor quality or absolute humidity. The

inlet pressure mUst also be specified; however, this quantity is

required to be constant with time. The prescribed variations must

cover the time interval over which the transient performance is to be

determined.
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SOLUTION PROCEDURE

The procedures developed for solving the governing differential

equations and computing the transient thermal performance are described

in this section. The manner in which the differential equations

are rearranged to obtain a more convenient form is discussed first.

The method used to solve for the temperature distributions at any

given time, 6 , is then presented. Finally, the over-all procedure

is described 'in general terms.

Finite -Difference Representation of Equations

An examination of the governing differential equations shows

that they are hyperbolic. Equations of this type can be solved by

a finite-difference scheme either based on the method of characteristics

(Ref 2) or based on taking incremental steps along the time scale

( & ) and in the physical flow plane ( XY ). A procedure

based on the method of characteristics could be used to obtain

accurate resulis for the temperature distributions at all values

of time. However, with this method there is no freedom in choosing

the finite-difference grid to be used in performing the calculations,

since the relative spacing of the points is fixed by the characteristics

of the particular problem being considered. As a result, this procedure

is somewhat unwieldy and difficult to implement. The alternative

approach of taking finite steps in 9 , X , and Y is somewhat

less accurate than the method of characteristics at small values of time;

that is, values on the order of the dwell time of either of the two

fluids.. However, this approach is considerably more flexible than the

method of characteristics and can be applied in a straightforward

manner. In addition, by appropriately choosing the form in which the

equations are written for purposes of solution, a procedure can

be obtained which will provide acceptable accuracy in virtually all

cases. For these reasons, a finite-difference procedure based on

the time scale and the physical flow plane has been selected as being
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the most practical for the application being considered.

The first step in obtaining the equations 'in a form suitable

for numerical solution is to replace all of the derivatives with

respect to time by their finite-difference approximations. The time

derivative of temperature (or quality) in each equation is then written

in the following form,

ZT T- T' -0 -T')

(22)

where TI denotes the value at the beginning of the time step, 8'

and T denotes the value at the current time, 8z=~6'IA

The remainder of each equation can be written in terms of the values

at the previous time ( L' ) or the current time.( 0 ).

For example, with the former approach (called the "explicit" method

in this report) Equation 7 becomes,

S Tr- TrVLx + UT, r (Tw-Tr')+ UTsjr (Ts ,r
- T , )

(23)

and with the latter approach (called the "implicit" method) it becomes

x/ + wr ' wTr Lx UT(Tw-Tr) UTsw, r(Ts, r -TY

(24)

These are termed the expl'icit and implicit methods, respectively,

since they correspond roughly to the methods of the same name used in

expressing the governing equations for the analogous case of

transient conduction.(Ref 3).'

The implicit method has been selected as the more practical

approach, since it allows considerable latitude in choosing the size



of the time step required to achieve acceptable accuracy. However,

in order to obtain sufficiently accurate solutions of the transient

performance, it is still advisable to bound the value of the time increment

used in carrying out the calculations. This is done by computing

approximate minimum and maximum acceptable values of 4lO (6Omtl;and

aB m, , respectively) and insuring that the actual value used for

the calculations at any time . is between these limits. The

suggested procedures for determining the values of Aom andAty are

presented and discussed in Appendix IV. In actual fact, it is not

strictly necessary to adhere rigidly to these limits. Experience

has shown that any reasonable value of 61 will yield sufficiently

accurate results, particularly in comparison to the accuracy of the

empirical data available for the calculation of the heat-transfer

coefficients.

Reduced Equations

As was described previously the calculation of the transient

performance for any particular case involves the simultaneous solution

of a set of five differential equations. In order to simplify the

solution procedure it is convenient to reduce the number of equations

to two, one related to each of the two fluids. This is accomplished

by replacing each derivative with respect to time by its finite-

difference approximation and then algebraically eliminating the values

of the metal temperatures at the current time ( T ,Tw ' , and

T-rs\ ) from the equations by substitution.

The rather lengthy algebraic procedure involved in reducing

the system of equations is described in Appendix V. The equations

which are obtained as a result of these manipulations are as follows.

The expression related to the s fluid is,

(25)



The corresponding relation for the r fluid 
is,

Tr Pr Q a_-ST

X (26)

•," 'dses where the r fluid is single phase or a wet gas If the

r fluid is a single-component condensing 
fluid, Equation 26 does not

apply in the two-phase region, since 
there the temperature is known

and equal to the saturation temperature (T5  
" . In the two-phase

region the vapor quality replaces the temperature of the r fluid

.as the unknown quantity, and the 
following expression is used insiead

of Equation 26:

V -' PP X, rTPI -I- Q-p 2 Ts

ax

(27)

The coefficients in the above expression ( ps , > s' Pr

heJ Qr , PTP , TP , and QG) P2) consist 
of combinations of

fluid properties and 
flow rates, heat-transfer 

conductances, geometric

properties, metal capacitances, 
and the value of the 

time increment.

In addition the coefficients, 
QS , r , and QTPI contain

the known values of the metal and fluid temperatures 
(and quality in

the two-phase region) 
at the beginning of the 

time step, 9

Expressions for all 
of these coefficients 

are derived and presented 
in

Appendix V.

The determination of the 
fluid temperature (and 

quality)

distributions at any 
time 9 now involves the simultaneous solution

of a pair of differential equations, Equations 
25 and 26 or 25 and 27.

This is accomplished by integrating consecutively 
the relation for

each fluid with respect to distance along its flow length from the

known conditions at its inlet to the outlet. The iterative solution
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procedure used is described subsequently in this section. Once the

fluid temperature (and quality) distributions at time 0 have been

determined, the corresponding metal temperature distributions are

computed with the following reduced equations,

TW = FI -", Fw2 Ts + Fw3 T-+-Fw,L Tr'- Fw, .

(28)

TsWr F&,1 1 
Tr +FS wk2 Tw,v + FW6IL W,.6FwLXL-

(29)

r,,, S Fs, T 4- Fksq. TSW, S

(30)

These expressions and the relations for the coefficients are also

presented in Appendix V.

Interation of Reduced Differential Equations

There are a variety of schemes available for numerically

integrating the differential equation for each of the two fluids.

The procedure chosen is semi-analytical in nature. In performing the

integration for each fluid, the procedure requires estimating the

temperature distribution of the fluid on the other side, and making

some estimate of the spatial variation (between calculation stations

equally spaced along the flow length) of this temperature and the

coefficients.

Calculation Sections

For the purpose of carrying out the numerical integration

of the differential equations, the heat exchanger is considered to be

divided into a number of calculation sections. The manner in which

this division is performed for parallel-flow and counterflow con-

figurations is illustrated in Figure I. In these configurations
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all properties are assumed to be constant in the trantsverse ( Y )

direction. In the following descr-iptions the subscript, " L ",

refers to properties either at station L or in section L (see

Fig 1). For example, Tr L is the temperature of the r fluid at

station i ; VL.[ is the average value of the coefficient, Pr,

in section For a multipass-crossflow configuration, the division

of the exchanger is as illustrated in Figure 2 for the specific case

of a three-pass arrangement. In each section all properties are assumed

to be constant in the direction transverse to the flow direction;

that is, along the 4y face of the section for the r fluid anl along

the ax face for the s fluid. The subscripts, " . " and " j "

refer to either stations or sections. For example, the temperature

Trpj is the temperature of the r fluid at station L along

the Ay face of section ljJ ; similarly, for the s fluid, Tr ,j

is the temperature at station j along the ty face of section

.j Also, as was the case for parallel flow and counterflow,

is the average value of the coefficient Pr in section

The sizes of the spatial increments, AZX and Ay , used

affect the accuracy of the solutions obtained. Experience has shown,

however, that the use of a reasonable number of sections (say, NxIlO

for parallel flow or counterflow and Wx,p=5 Nyp = 10 for

crossflow) yields results which are sufficiently accurate for most

applications.

Integrated Equations

The approach involved in obtaining the integrated forms of

the reduced differential equations is illustrated here by considering

the relation for the r fluid, Equation 26, for a parallel-flow or

counterflow configuration. In integrating this expression over the

general section . (that is, from station L to L+ 1 along

the flow length), or xi to Xi+1 it is assumed that the coef-

ficients Pr and Or2 are constant and equal to the average values,
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-- +

(31)

(32)

In addition, it is assumed that Q°I and Ts vary linearly with

distance,

9 I = CLq by X

.Ts --T  b T X

where the constants, X , Q , T , and bT , are computed

from the values of QYI and TS at stations L and + I

With these assumptions, Equation 26 in the section L takes the form,

+ Y, L Tr cL + 3 i x

(33)

where the constants ZI' and /' are defined as,

l s +Q + Q yL 7-T

(34)

bL T ai T

(35)
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Equation 33 is now seen to be a linear differential equation of the

first order and first degree for which the integrating factor is

rL (pp 40-43 of Ref 4). Applying this factor, integrating

between Xj and Xi-- -- X l-- x , and substituting for the various

constants yields the final integrated form of Equation 26,

TY, rl, +4 , L I r, + I L A  +

(36)

With calculated values of the coefficients and estimated values of

7s at all stations, this expression can be used to compute the

temperature distribution of the .r: fluid starting with the known

condition at the inlet (T-- T, r at i =L ) and proceeding to the

outlet (L-+1--N- ).

The same procedure as described above is used to obtain the

final integrated forms of Equations 25 and 27:

(37)

where L_ 'i for parallel flow and N NX+2-i for counterflow and

+P -'vrFi(L -F I'P L

(38)
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Expressions similar to Equations 36 through 38 are obtained for the

case of a crossflow configuration, the only difference being in the

method of subscripting.

Iterative Solution Procedure

As was mentioned previously, an iterative solution of the

equations is required to determine the temperature (and quality)

distributions at any time 6 from the known distributions at the

beginning of the time step ( 9 - /~9 ). The procedure selected for

performing this iterative solution is called the "double-sweep"

method. With this method, each iteration involves two integrations

(or calculation sweeps), one in each of the two general flow directions

of the exchanger. The major steps of the general procedure are

described briefly below for the specific case of a counterflow con-

figuration in which both fluids are single-phase. The steps in the

procedures for other flow arrangements are essentially the same and 
can

be inferred easily from the following description:

I. The temperature distributions of both fluids are estimated.

For the calculations at any time 7 , the initial

estimates are taken as the distributions computed for

the previous time '' . Subsequent estimates are based

on the results of each iteration.

2. The coefficients, P, , , and R , Qsi '

Qs2 , are evaluated at each calculation station using the

estimated values of temperature.

3. Keeping the estimated temperature distribution of the s

fluid fixed, the temperature distribution of the r fluid

is calculated. This calculation is performed using

Equation 36 to determine the values of T at each

station along the flow length, starting with the specified

temperature at the r fluid inlet ( Ti% ) for time .

4. Keeping the temperature distribution of the r fluid fixed

at the values computed in Step 3, the temperature distribution
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of the s fluid is calculated. This calculation is

performed using Equation 37 to determine the values

of TS at each station, starting with the specified

temperature at the s fluid inlet ( rT )

for time 0

5. Steps 1 through 4 are repeated until the distributions

calculated in Steps 3 and 4 are within a specified tolerance

of the corresponding distributions estimated in Step 1.

When this condition has been satisfied and converged

fluid temperature distributions have been obtained, the

coefficients in Equations 28 through 30 are evaluated

at each calculation station. These coefficients and

expressions are then used to compute the metal temperatures,

T T , and Tsw : , at each station.

Essentially the same procedure as described above is used for

cases where the r fluid is condensing. One difference is that the in-

tegration over the section in which condensation starts is performed

in two parts. For the portion of the section upstream of the point

of condensation (that is, from the adjacent upstream station to the

.condensation point) the coefficients are taken to be constant and

equal to their values at the adjacent upstream calculation station.

Similarly, for the downstream portion of the section, the coefficients

are taken to be equal to their values at the adjacent downstream sta-

tion. This is done because the values of the coefficients in the non-

condensing region differ signficantly from those in the condensing

region (due to the different heat-transfer mechanisms prevailing),

requiring that the code-satio point be treated as a discontinuity.

Another necessary va-iaticn in the procedure is due to the fact that

the coefficients are relatively strong functions of the temperature (and

quality) distributions of the condensing fluid. Therefore, in the iter-

ation procedure, two consecutive calculation sweeps are made keeping the

s fluid temperature distribution fixed instead of one as in the case of

two single-phase fluids. This is done so as to "update" the values of

the coefficie-ts ir each iteration before corpjtine the terperatues of

the s fluid. Ir thi, nan-e , a rore stable approach to the so!ltion

is obtained.
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General Description of Over-All Procedure

The stepwise procedure used to determine the transient

performance over a specified time interval is based on the methods

previously described and is quite straightforward in nature. 
First,

the temperature distributions at the start of the transient (initial

conditions at time zero) are determined. The magnitude of the first

time increment, A& , is then chosen and used to define the new

time, 6 . The inlet conditions and flow rates (boundary conditions)

of both fluids are evaluated at 6 from the prescribed variations

of these quantities. The double-sweep method of iteration described

above is then used to determine the new distributions. The pressure

drops of both fluids are calculated iteratively, along 
with the tem-

perature distributions, using the methods and relations described on

pages 98-99 and 117-120 of Reference 5.. This procedure, starting with

the selection of the time increment and determining the transient

performance of the exchanger at the new value of 2 , is repeated

until the desired time interval has been covered.
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Analytical models have been developed which represent

single-phase or condensing heat-transfer processes in compact 
plate-

fin heat exchangers operating under transient conditions. The dif-

ferential equations governing the transient thermal performance have

been derived on the basis of these models for parallel-flow, counterflow,

and multipass-crossflow configurations. A finite-difference procedure,

which involves using the implicit or backward-difference method of

representing the derivatives with respect to time, has been developed

for the simultaneous solution of the governing equations. This

procedure can be used to obtain the temperature distributions in the

exchanger at any time 6 for given initial conditions and prescribed

variations with time of the inlet conditions and flow'rates of both

streams. Although the procedure is iterative in nature, it has proved

quite effective in obtaining sufficiently stable and accurate solutions.

Finally, this has led to the development of a general method of analyzing

the transient behavior of the types of compact heat exchanger most

often encountered in aerospace applications.

Recommendations

Due to the hyperbolic nature of the transient differential

equations (see Appendix IV), any finite-difference solution procedure

based on the physical flow plane may not yield accurate results for

the temperature distributions at valies of time less than the dwell

time of either of the two fluids. However, solu)ion ( for the oitlet

conditions at all times greater than say twice the dwell time are

sufficiently accurate for all practical applications. In most cases,

the response time of each fluid is one or two orders of magnitude

larger than its dwell time. If the solution procedure is being used

as an analytical tool to investigate the over-all dynamic behavior of

the heat exchanger, the main points of interest are the general shapes
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of the transient performance curves and the values of the response times

The minor inaccuracies inherent at small values of time will then be

negligible and will have no significant effect on the results obtained°

However, there may be applications where it is desirable to compute

the detailed temperature distributions throughout the exchanger at

all values of time; for example, in performing a stress analysis of

a given heat-exchanger configuration to determine whether the transient

thermal stresses are within acceptable.limits. If such applications

are of interest, it is recommended that a new procedure be developed

for the solution of the transient differential equations which would

satisfy this requirement. This would involve using the method of

characteristics (Ref 2) to determine the detailed temperature dis-

tributions at all values of time within the interval of interest.

In treating heat exchangers in which condensation from a

wet gas occurs, the procedure for determining the transient performance

involves assuming that the heat-transfer coefficient can be evaluated

using experimental data obtained with a single-phase fluid. This

assumption is expected to be quite reasonable for the vast majority

of cases involving this type of exchanger. However, there is very

-little known about the mechanism of condensation from a wet gas and

its effects on the heat-transfer process. Since this situation

occurs in many aerospace applications, it seems important that basic

information on its effects be obtained. Therefore, it is recommended

that an analytical and experimental program be initiated to provide a

better understanding of the phenomenon of condensation from a wet gas
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NOMENC LATURE

Symbol Description Units

A Heat transfer area sq ft

Ac Minimum free flow area sq ft

AS/A Ratio of fin to total heat-transfer

area

AH Heat-transfer area per unit area

in the flow plane for a matrix

Heat-transfer area of sidewall
pA- llel to parting plates sq ft

Asw- L  Heat-transfer area of side wall

normal to part'r- ' tm sq ft

a Parting-plate thickness ft

as Splitter-plate thickness 
ft

Plate thickness of side wall

parallel to parting plates ft

Plate thickness of side wall

wjt normal to parting plates ft

Plate spacing (distance between

adjacent plates) for a matrix ft

CW Total heat capacity of exchanger

core structure Btu per deg R

CSW Heat capacity of side wall in

contact with one fluid Btu per deg R

CP Specific heat B t pe ihr deg R

{ Fanning friction factor

G Mass velocity (- W/A ) Ibm per hr sq ft

Acceleration due to gravity ft per hr2

Proportionality constant in Newton- 2

Law (4.169x10 ) ft Ibm per ibf hr



Symbol Descr i ti on Units

1 Enthalpy per unit mass Btu per Ibm

Heat transfer coefficient Btu per hr sq
ft deg R

h Latent heat (heat of

vaporization) Btu per Ibm

J Colburn modul'us - -

Thermal conductivity Btu per hr ft

deg R

L ' Flow length: or total heat-

exchanger core dimension ft

Effective fin length ft

lvl Molecular weight Ibm per Ibm-mole

Number of layers or sandwiiches
L for a matrix

' Number of passes in a multipass

crossflow exchanger

1V Rate of condensation for a

wet gas Ibm per hr

1qA Fraction of condensation from a
dW wet gas occurring on separating

walls and attached fins

WX Total number of length increments

into which the X dimension (LX )
of an exchanger is divided

NYp Total number of length increments

into which the Y dimension per pass

(Ly) of a crossflow exchanger is

divided

Pr Prandtl number (eCp/- -

p Pressure Ibf per sq ft

R_ Time-increment parameter defined
in Appendix IV



mbol Description Uni ts

Re Reynolds number (4 // ). - -

Hydraulic radius (EAc/A ) ft

sf Fin spacing ft

T Temperature deg R

UT Heat-transfer conductance on
one side .... Btu per hr deg R

V Volume cu ft

(Vf/V)Lnt Ratio of metal volume to total
volume between plates for
a matrix

Vvoid Void volume on one side cu ft

Fluid inventory on one side Ibm

W Mass flow rate Ibm per hr

X Coordinate axis of exchanger ft

X v  Vapor quality (mass-fraction
vapor) of a single-component
condensing fluid

Y Coordinate axis of exchanger ft

4)0 Pressure drop lbf per sq ft

Length increment in X
direction ft

/ Length increment in y
direction ft

/9 Time increment hr

Or  Effective fin thickness ft

Fin efficiency - -

'7o Heat-transfer surface efficien-y - -

Time hr

9 Time at beginning of time r: h-
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Symbo Desc on Units

*$ Dwell time of one fluid in

heat exchanger ( W/W ) hr

/L ~Dynamic viscosity Ibm per hr ft

Distance along flow direction

of s fluid ft

/ Density lbm per cu ft

01 Ratio of minimum free-flow area

to total face area for one side - -

hf. Ratio of minimum free-flow area to

face area between adjacent plates - -

Vapor shear stress lbf per sq ft

Absolute humidity of a wet gas

(Ibm moisture/Ibm dry gas) -

Subscript Description

Value at dew point of wet gas

Gas component of wet gas

iStation or section in the X direction

Inlet

j Station or section in the y direction

for a crossflow configuration

Liquid

M Mean

mcL X Maximum

e t Metal

tL h Minimum

NF Nonflow dimension
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Subscript Description

o0u Outlet

r One side or fluid of heat exchanger

CJ Other side or fluid of heat exchanger

sat Vplue at saturated conditions

SSw Side Wall

V Vapor

w Separating Wall

X Coordinate axis of exchanger

Y Coordinate axis of exchanger

Super t scrpt _e ion

0 Quantity nondimensionalized by

hydraulic radius

Value at beginning of time

step (6 z- )
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APPENDIX I

CALCULATION OF GEOMETRIC PROPERTIES

Expressions are presented in this appendix for computing

the major geometric properties of the heat exchanger which are

required for the calculation of the transient performance. Several

geometric quantities related to the heat-transfer matrix (surface)

associated with each fluid appear in these expressions; for example,

the ratios of the total heat-transfer area of one passage to the

surface area of one plate ( A4 ), the minimum free-flow area to

face area between adjacent plates (aint  ), and the metal volume

to total volume between adjacent plates (Vf/V)nL- ). The relations

used to compute these and other pertinent geometric variables are

derived and presented in Appendix I of Reference 5.for the different

types of plate-fin matrices commonly used.

Void Volumes

The void volume on each side ( Vvo d ) is used in

computing the inventory of each fluid. The expression for computing

the void volume on the r side is,

VvoiJr = r'

where V is the total volume,

V=LxLy LNF
(1-2)

The ratio of minimum free-flow area to total face area for the r side,

6 , is computed as,

r Ot, Tr L r

TbT



where,

bT br NLr +(N4L, V-I) Lp, r4 6s NL,s+(hLS,-)0 RP,S + a.

(1-4)

The corresponding relations for the s side are the same as those

on the previous page with the "r" subscript replaced by "'s".

Heat-Transfer Areas

The total heat-transfer area in contact with each fluid

involves two categories--the surface area associated with the side

walls and the surface area associated with the separating wall

and attached fins.

Side Walls

The heat-transfer area of the side walls in contact with

each fluid is calculated in two parts corresponding to the area

associated with the side wall parallel to the parting plates (As~W,

and normal to the parting plates (Aswt ). The area Aswe simply

consists of half the total surface area of one passage (including the

fins); the expression for the r side is

Asw,, r A H,r LXLy

('-5)

The relation for Awt on the r side is,

Asw,r , = Bswbr NL,r

(1-6)
where

2LL-7)

(1-7)
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The corresponding expressions for the s side are the same except

that the "r" subscript is replaced by "s".

Separatinq Wall and Fins

The heat-transfer area on each side is obtained from the

definition of the hydraulic radius. For the r side, the expression

is,

Ac,r Lx

Ar rhr AHjrXhL

(I-8)

where the total minimum free-flow area, Acr , is computed as,

Ac,r o-' L,, Ly

(I-9)

Note that in calculating this quantity, the area associated with the

side wall parallel to the parting plates is subtracted from the

nominal heat-transfer area for the fluid.

The expression used to compute the heat-transfer area

on the s side depends on the flow arrangement. For parallel-flow

and counterflow,

Acs Lx I
s r AHH, s LLy

(1-10)

where

Ac =S LmF L y



For multipass crossflow,

A - Ac.NPs L Ay I L Ly

(1-12)

where

(1-13)

Metal Capacitances

The capacitance of the separating walls and attached fins

is given by the expression.

L etcern QVra. Pie t P, ms Oe P p s a t

(1-14)

where

Vrct, ' F itrb Ul, + , r1) O aS P,

(0-15)

Vc , .ih *S 

(1-16)

2a

Vap bT
(V-17)

6T (i) I)
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The relation for the capacitance of -the side walls in contac-t wiith

the r fluid is,

•l ne- r l i ) A.IL, +b(r WtI.(NLH )dsI, cj
(1-18)

The corresponding expression for Csw,s is the same as Equation

1-18 with the "r" subscript replaced by "s"
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APPENDIX I I

CALCULATION OF TOTAL CONDUCTANCES

This appendix presents the relations and procedures used

to determine the values of the total conductances for heat transfer

between each fluid and the metal surfaces with which it is in contact.

First the expressions defining the conductances for a side are defined.

This is followed by a description of the procedures for calculating

the major terms in these expressions, the heat-transfer coefficient

( h ) and fin efficiency ( 0 )

Definition

For heat transfer between either fluid and the separating

wall (including the fins) the conductance is defined as

UT. o hA

For the side walls in contact with the fluid, the conductance is

given by the relation,

T.,l -s W hAsw,. + h Asw,4

(11-2)

In the above expressions, the term 0 is the over-all surface

efficiency defined as,

7o=1- (A/A)( )
(I-3)

Heat-Transfer Coefficient

Single-Phase Fluid or -det Gas

The procedure for computing the value of 8 used in
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Equations I-1 and 11-2 is the same whether the fluid is single-phase

or a condensing wet gas. In evaluating the heat-transfer coefficient,

it is assumed that a table of experimental values of friction factor

( f ) and Colburn modulus ( j ) versus Reynolds number ( FZc )

is available for the heat-transfer matrix (surface) through which

the fluid flows. In using this table, the local Reynolds number,

4r h G

is computed. A mean value of the Colburn modulus, J , is then

obtained by interpolation from the table assuming,

HC

(11-5)

where [I and oc. are constants of interpolation obtained from

the tabulated values of Re and j The value of jm is

corrected for the effect of temperature-dependent fluid properties

to determine the final value of j For a gas,

(i-6)

where T is the local wall temperature. Sirmilariy, for a !iq. id

/Uw

(11-7)

where /] is the viscosity evaluated at T . The exponent, Y

/-v.
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is a function of the flow regime and whether the fluid is being

heated or cooled (Ref 5, pp 90-91). When the final corrected

value of j has been obtained, the heat-transfer coefficient is

calculated as;

jGc,

(11-8)

Single-Component Condensinq Fluid

The procedure used to calculate b for this case de-

pends on the local state of the fluid. In the superheated-vapor

region (see sketch on page 13 ), the procedure is the same as that

described above for a single-phase fluid. In the two-phase region,

the procedure is based on the correlations of Rohsenow, 
Webber and

Ling (Ref 6) and is essentially the same as that described on pages

115-117 of Refertnce 4 and pages 179-180 of Reference 7, the only

exception being that local rather than mean values of h are

obtained; this procedure, with Y = O , is also used to compute

h in the subcooled-liquid region.

The method of Rohsenow et al yields value.s of the mean

heat-transfer coefficient, h, , over the distance between the

point where condensation starts to the point being considered, ZL.

Curves obtained using this method are presented on Figure 103 of

Reference 7. These show the variation of the nondimensional mean heat-

transfer coefficient, Ih , versus the nondimensional condensing

length,Z7 , and liquid Reynolds number,Rje, with nondimensioa

shear stres - as a parameter for two values of I;quid Pra-dt!

number, P = and P =l10. In the finite-difference calculations

described in this report, it is more convenient to be able to evaluate

the local condensing heat-transfer coefficient, . In order to

do this, the plots of he were graphically differentiated to

obtain the ccrepcnding plots of .h . The resulting curves oF



- versus e. are approximately linear on a log-log plot and

are shown on Figures 3 and 4. The procedure for determining I then

involves calculating the local values of 'rE , CV, and R.e as

St. /Z

'/3

(11-10)

4 'h G
wI (- XV)-

(11-11)

where the vapor shear stress ( TV ) is evaluated by the procedures

described on pages 115-117 of Reference 5. These quantities are

then used to interpolate among the various curves and obtain the value

of n Finally, the local heat-transfer coefficient is

calculated as,

J-

(11-12)

Fin Efficiency

Sinqle-Phase or Single-Component Condensinq Fluid

For a heat-transfer matrix arranged in a single-sandwich

configuration, the fin efficiency is calculated as,

, i-13)
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where W-1 -is the fin-efficiency parameter defined as,

(11-14)

The expressions used to compute J. for double and triple sandwich

arrangements are given in Appendix II of Reference 1.

Wet Gas

The relations used to compute ) for the case of

a wet gas are exactly the same as those mentioned above except

that the fin-efficiency parameter is calculated as,

(1 I-15)

The quantity, h* , is an "effective" heat-transfer coefficient

defined so as to approximately account for the effect of condensation

on the temperature distributions in the fins. The expression for

bh is derived below.

For the case of a condensing wet gas, the heat-transfer

rate ( , ) to the general surface area, A , can be written

as,

=' kA (T-Tw)t h~

(11-16)
.here Nv is the rate of condensation (see Appendix ni1)



given by the relation,

ViT J O 2)

(11-17)

Substituting Equation 11-17 into Equation 11-16 and using the finite-

difference approximation of the time derivative gives,

Comparison of Equation 11-18 with the corresponding relation for the

single-phase case,

g = h4A (T-N ) (11-19)

shows that the effective heat-transfer coefficient is given by the

expression,

( I1-20)



APPENDIX III

DERIVATION OF TRANSIENT EQUATIONS FOR A WET GAS

In this appendix, the transient differential equations for

the case of a condensing wet gas are derived and presented. Ex-

pressions for computing the humidity ( ) ) and derivative of

humidity with respect to fluid temperature ( W/T ) are also

given.

Fluid Enerav Balance

Considering a general differential element, the energy

balance on the condensing wet gas (r fluid) gives,

a(W9%* *v dwd a HW-z%*WWV)(v) djid 'v

+ (Ill-y

Theenthalpies of the gas and vapor components, - and I-V

are

[ =C TY -TO

(V (T-2)

y Cv (Tr-TTp)--4, up+ C, (T,- To)



where To  is some reference temperature at which both enthal-

pies are defined as being zero. The expression for the condensation

rate, NV , is obtained from a mass balance as,

W v "ad'v
Nv- 'ao "b x L,

(II 1-4)

Now, from the definition of absolute humidity,

(111-5)

Assuming is approximately constant (that is, the local value

of gas density does not change significantly) we can write

-j 1 9 V

(111-7)

(11 1-8)

Substituting Equations 111-6 through 111-8 into Equation II111-1 and

simplifying the resulting expression gives,

+ U, (T- T, ) t Ut s r(Ts -Tr)

(111-9)
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The expressions for H - and hi can be differentiated

to obtain,

(I -10)

-- c

Then, if we define,

(II I-11)

the final form of Equation 111-9 is obtained as,

(v~C'a) Lx4U, (r )+ UTT,( i.

(11-12)

Wall Enerqy Balance

Energy balances on the separating wall and side walls in

contact with the condensing wet gas give the following two expressions,

x± - Tr-Tw ) T-,) (;- TW)

(1 P W) v w )  d dY

(I 111-13)

\.Lg>,y J a\ ;, ' ,r7-Tsw) vv--£,sw) NvSw d

SLy x , (I I1-1 )
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In these relati.ons, the terms Ni,w and Nv, sare the condensation

rates on the separating and side walls, respectively,

N, V4 NV, sw Nv

S(111-15)

In addition, the terms W/,w and Weljs represent the liquid flow

rates along the walls. Using the definitions of enthalpy in Equations

III-13 and 111-14 and simplifying the resulting expressions gives,

c - T.r (-T, Ur, (T-)+ + (T-ToP)+h.4~ CP (TTj v, w

(111-17)

A number of reasonable simplifying assumptions can be made

to reduce the complexity of the above relations. First of all, it

is reasonable to assume that there is not a large variation with

distance in either of the two wall temperatures. In addition, it

is likely that the liquid flow rates along the walls will be small.

Therefore, the terms(W ,cw, ") aT L and(t~wCP.,e) Lx  should

be negligible compared to the otner terms in the equatc..s and can be

ignored with little loss in accuracy. An additional assumption

which is quite reasonable is that the terms Cp, cv( Ta ,.((Tp-Tw) and

C Fv(T,-TDp)+C _e (T -Tsw) are each much smaller than the latent

heat of vaporization, .. ,DP With these assumptions, Equations

111-16 and 111-17 reduce to



-UT rw)± 1 (+~-TS -+ K w

(111-18)

(III-19)

If we define the fraction of the total condensation rate

occurring on the separating wall as Nvv, then,

(111-20)

(111-21)

An accurate approximation of NVW can be obtained by assuming that

Nv,WOCUTTr,-Tw) and Nv,swOCUTjY,Y(T.- ). The term v is

then given by the relation,

w7, (Tr- TW)

u, ,, ('r.-T - - UT,swv (T- -srL )
(111-22)

Now with the assumptions listed on page 7 of the main text, the

humidity is a function of fluid temperature only. Therefore, the

derivatives of humidity in the expression for the total condensation

rate (Equation 111-8) can be written as,

(I1i-23)
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The relation for NV then becomes

(111-24)

The above expressions are then used in Equations 111-18 and 111-19

to obtain the final forms of the transient differential equations for

the walls:

_.b Lai (111-25)

(111-26)

Evaluation of 4) and c /T

The absolute humidity of any mixture can be expressed in

terms of the partial pressures of the two components as,

PP My

(111-27)

where P is the partial pressure of the vapor component, P is

the local pressure of the mixture, and M and MT are the

molecular weights of the vapor and gas components. At all temperatures

below the dew point, the gas is assumed to be saturated. For a saturated

mixture,

Sv-28)

(11-28)



where ./, is the vapor pressure of the vapor component evaluated at

the local fluid temperature. Equation 11-27 then becomes,

vM,

(111-29)

For most substances, the vapor-pressure variation with

temperature can be expressed quite accurately over a moderate temperature

range as,

(111-30)

or

(111-31)

where Glp and b are constants which can be evaluated locally

from tabulated values of _bv versus T for the vapor

component.

Substituting Equation 111-31 into 111-27 gives the following

expression for A) as a function of fluid temperature,

MV)

(111-32)

This is then differentiated with respect to T to obtain the

final relation for (/ T ,

7- F 6)1-
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Por v ijues o fluid temperature above the dew point, the humidity is -

constant (B/W/6T---O ) and is equal to the inlet value. Below the

dew point, CJ and )OJ/c)T are computed by Equations 11-29

and 111-33, respectively, using tabulated values of - V versus

T to obtain and I •
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APPENDIX IV

FACTORS AFFECTING CHOICE OF T!ME INCREMENT

The size of the time increment used in the finite-difference

solution of the transient equations at any time 9 affects to some

extent the accuracy obtained. Experience has shown that the effect

of A~ is moderate and considerable latitude exists in the

choice of the value used. However, in order to achieve reasonable

accuracy, it is desirable to bound A9 ; that is, to insure

that the value selected is between calculated minimum and maximum

values. The suggested procedures for computing Aj)y;n and A _OX

are presented in this appendix.

Calculation of Minimum Time Increment

Intuitively, one would expect the accuracy of the finite-

difference solutions to improve as the size of the time increment is

decreased; that is, one vould not expect there to be a limiting

minimum value of ZA However, examination of the transient

equations involved shows that they are hyperbolic in nature. There-

fore, results obtained using any finite-difference procedure based

on taking incremental steps along the time scale and in the physical

flow plane are likely to be somewhat inaccurate for small values of

time; that is, values of L on the order of the dwell times of

the fluids in the heat exchanger.

This aspect of the transient equations can be illustrated

by considering the case of flow through a constant wall temperature

duct. The governing eqjation for tnis case is,

bT aT

(IV-l)

where V is the fluid velocity, 2 is the distance along the

flow length ( L ), ard
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T =-- Vfluij - "r .,1

h (A/L )
S wcp

(IV-2)

This equation has a single characteristic given by

Choar V Ohcav

(Iv-3)

The characteristics represent lines in the Z- plane along which

discontinuities in the derivatives of T may exist.

The finite-difference approximations in the selected

solution procedure are roughly equivalent to

T-rT aTi- +. +

v+ AC) T

____ITi + TC + ___ ______

I (C9

giving a recurrence formula of

I-
R + 0C T (-+o- (Ti + Z )

(iv-4)

where the subcript " i " refers to equally spaced calculation stations

along the flow length and the term, R , is defined as,
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R V40vAk

(Iv-5)

Equation IV-5 can be written in terms of the fluid dwell time

(,j=W/w ) by recognizing that VL/BJ . The resulting

expression is then,

(iv-6)

The question is how to select the time increment in order

to achieve optimum accuracy in the numerical solution. We will

consider the simple case where := O and choose five equal

spatial increments in the duct. The selected initial and boundary

conditions are

-r o, )- o
T (,0)-= oO

In this case, the exact solution for the outlet temperature (T 5 )

is,

roUT = 0 for 61Cd

TOUT: 100 for B- d

We will compare this with the finite-difference solutions for four

values of K : 0.2, 1, 2 and 4. The appropriate recurrence formulas

are obtained from Equation iV-4 as.
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T7 " 1 .-- .+- '09 1(T-.+ .'. for R "- 2 -

T( T (-+ +(. T'for R = 2

+ TlT) for R"

The calculated outlet temperatures are shown plotted in Figure 5

from which it can be observed that F = 1,2, or 4 give a much better

approximation to the exact solution than R = 0.2. The reason for

this lies in the relationship between the finite-difference net and

the physical characteristics. For small values of Z. , we have

B

Physically, the temperature of any point above the characteristic

line (Z=V-9 ) has no influence on the temperature at any point on the

characteristic. Yet, the finite-difference formula for small R

weights the temperature Tj heavily in determining fitl ;

obviously this must be an inaccurate procedure. For large ,

we have
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TL.  ._.

'T!

and a similar situation with respect to the influence of T on

Titi ; the inaccuracy is further enhanced by the fact that physically

the temperature T L  also has little influence on T+I For

R = 2, the temperatures which affect Tj+ I in the finite-

difference solution are limited to those which can physically affect

T I ; hence, this gives the optimum accuracy.

Based on this simple example, it is possible to formulate

some rules for determining a suitable time increment in the more

complicated problem of a heat exchanger. This problem has two

characteristics (one corresponding to each fluid) and neither is in

general a straight line in the Z-9 plane (that is, the fluid

velocity varies). Accordingly the minimum time increment should be

based on the side of the heat exchanger which yields the maximum

dwell time of the fluid. In addition, although R = 2 gives the

optimum accuracy for the simple case of an insulated duct, we will

choose R =l1 as being a reasonable compromise between solution

accuracy at small values of B and calculation time (that is,

number of steps required to cover a given time interval).. Therefore,

the expression for ~ -j6 is obtained from Equation IV-6 with F. = 1,

(Iv-7)
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It should be noted that based on the results of the simple example

described here, considerable latitude exists in the choice of A .

Therefore, the terms &J ,  and 9,s need only be determined

very approximately.

Calculation of Maximum Time Increment

Another requirement for accuracy follows from the finite-

difference approximation to T/D9 If this is to be reasonably

accurate, it is essential that r not change much in one time

interval due to normal heat-convection effects; that is, A9 should

be chosen such that

T

(tv-8)

This requirement can be expressed more quantitatively and used to

generate a simple rule for calculating the maximum time step.

The selected procedure involves extrapolating the curves

of ToUT versus 0 for each side and estimating the value of 60 re-

quired to achieve a certain reference AT in a reasonable number

of time steps (say 10). The outlet position of each fluid is chosen,

since the outlet conditions are of the major interest. A convenient

(AT)ref to choose for each fluid is the absolute temperature

difference between the two fluids at the outlet of the one being con-

sidered. Based on these considerations, the expression used to

compute !NOrnax is,

(iv-9)

where (Tr T)

( T/ 9)0 V T,

(IV- 10)
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1A 0 .I 

(iV-ll)

The terms(&T/AzQ)O , and (T -T 5 )our in these relations are obtained

by extrapolating the results of the transient calculations obtained

at the previous time. The minimum of the two values is taken so as

to insure that the requirement expressed in Equation IV-8 is satisfied

for both fluids.

For the case where the r fluid is a single-component con-

densing fluid and is two-phase at outlet, a different expression

must be used to compute oo . This is based on the variation

of the exit quality with time and is given by-the relation,

A Ar (A. V /L 8 )QUr

(IV-12)

where a reference quality difference of 0.I has been selected.

The question arises as to the value of A to be used

if A , X i n - In this case, /9= Mn should

be used since the transport effects (represented roughly by the

characteristic properties) would appear to be the more important in

terms of affecting the accuracy of the solutions,



APPENDIX V

DERIVATION OF REDUCED FORMS OF DIFFERENTIAL EQUATIONS

The calculation of the transient performance involves the

simultaneous solution of a set of five differential equations, as

discussed in the section of this report titled, "Governing Equations".

In performing these calculations, it is more convenient to work with

a set of two differential equations, one for each fluid; this is

done by using a finite-difference representation of the time der-

ivatives,

and algebraically reducing the oringal set. In all cases, the

reduced form of the differential equation for the s fluid is,

(v-1)

The corresponding relation for the r fluid is,

aT + P1, T= 0 vI +QraZTs

(V-2)

for cases where the r fluid is single-phase or a wet gas. If the

r fluid is a single-component condensing fluid, X% r replaces Ty as

the unknown quantity in the two-phase region, and the following

expression is used instead of equation V-2:



XVt +, PTP XVr Q T P I ? P 2 " S

ax

(v-3)

This appendix describes the algebraic reduction of the

set of differential equations and presents the relations defining

the coefficients of the reduced equations. In addition, the expressions

relating the three wall temperatures to the fluid temperatures (Equations

28,.29, and 30) are derived, and the coefficients appearing in them

are defined.

Equation for Tw

The desired form of the equation for the separating wall is,

NY-W -FI "ZTs-+ F,3T -,t 0, LTr - F , 1XL

(V-4)

For the case where the r fluid is not a wet gas, the

pertinent relation is given by Equation 9. Using the finite-

difference representation of aTw/4p , this becomes

W (TV,-Tw') UT,r(Tr-T)+; s (Ts -Tw)

(v-5)

Defining,

Cw + UT,. + U

S DW

(v-6)



and solving for "~ , we obtain

(v-7)

When the.r fluid is a wet gas, the pertinent relation for

the separating wall is Equation 18. In finite-difference form this

becomes,

NW'h bD) V/r -Tr +

(v-8)

Defining,

AL hf,DP Tr

xL ,/L (W.,r Lx)
(v-9)

and solving for Tw  gives,

+ Tr

ST- D ax (v-1o)

Comparison of Equations V-7 and V-10 with Equation V-4

gives the following general definitions of the coefficients,

FW1* FWI-Fw L

FWz IT S(

mr- c'/A 9 (V-11)
l-I
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where

Fw, 6, L = Fw, xL =

(V-12)

when the r fluid is not a wet gas, and

36, L Nv, wFW)O, L
DW

1xL NV,W

(V-13)

when the r fluid is a wet gas.

Equation for Tsw,y

The desired form of the equation for the side wall in contact

with the r fluid is,

TsWl Fsw l I t Fsw, 2 T,y r Fsw,L Tr -F WL )

(v-14)

For the case where the r fluid is not a wet gas, the

pertinent relation is Equation 10. With the finite-difference

representation of this becomes,

Cssr T _Tiw r)_,- ( Tr-TS, )

(v-15)
Defining

sw r= " UT, sw,

(v-16)



and solving for Ts ~, gives,

Ts,V = Fs y T. + sw ) T
Ds wv, r

(V- 17)

When the r fluid is a wet gas, the relation is given by

Equ:tion 19. Using the finite-difference representation of the time

cerivatives, we obtain

(Fswy -Tsw) V r L
a / -,,,) UT-T

(v- 8)

Using the definitions of L ,and rXL (Equation

V-9) and solving for TsVV gives,

Jf..k AI (I w vsw,)/ E \ /

DVI4W 5) $W, br

+ T
(V-19)

Comparing Equations V-17 and V-19 with Equation V-14, we

arrive at the following general definitions of the coefficients,

Fsvr I.r - F L

(V-20)

where

Fsw , 0L s w, x, L

(V-21)
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when the r fluid is not a wet gas, and

Fvx,L Dw,.

(V-22)

in cases where the r fluid is a wet gas.

Equation for ?_sw.

The desired form of the equation for the side wall in

contact with the s fluid is,

F ws Fsw l 7+Fws, TS,

(V-23)

In all cases, the pertinent relation is Equation 11. Using

the finite-difference representation for bTs3 ,/3 0 gives,

Cs, s)(T s - SI / s) = U T s (Ts- Ts w, s)
(V-24)

Defining,

Csu, S U--- UTSW ,
OS w, s

(V-25)

and solving for TIs we obtain

S T (v26)

(V-26)
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Comparing Equation V-26 with V-23 gives the following definitions

of the coefficients.

UT s
SW 5 D~ Osw, 5

FsLJ 2 1 DSW,S

(V-27)

Equations for r Fluid

Temperature Equation

For cases where the r fluid is single phase (including

in this category the single-phase regions of a single-component

condensing fluid) or a wet gas, the differential equations for

T. (Equations 7 and 17) can be written in the following general

form:

* - - , T. + ,, W,.Y, Y

(V-28)

where

VWr " -

C C
I. r (V-29)

if the fluid is not a wet gas, or

w r - wor J

Y,. - C ?, p , Y (v-30)

if the fluid is a wet gas.

Using the finite-difference representation of T r) and

substituting Equations V-4 and V-14 for T and Tsw,, in

Equation V-28 gives the following expression:
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(wc L! .~,L) , 7, frTr- F, Ts

(v-31)

where,
C X,L - UT FW,x,L UT;,yr FSwx,L

E + U ( -F i)+ U~sw FswrP + C6

,L = UT, V Fw, 0,L + UT, s r Fsw 9, L

E r, L) ,"+ ( T r =W ) T T SW V? T ) Y

(V-32)

Comparing Equation V-31 with V-2, we arrive at the following definitions

of the coefficients,

Srr

l-r w> . Lx + cx, L

U7, Fva

r, L - x, L

(v-33)
Vapor-Quality Equation

For the case where the r fluid is a single-component con-

densing fluid in the two-phase region, the pertinent relation is

Equation 16. Using the finite-difference representation of ax r/a ,

this relation becomes

(v-34)
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Substituting Equations V-4 and V-14 (with Fw, ,L= Fw L: F! k,LFV , L -o )

for Tw  and Ts. and TT =Tc in Equation V-34 gives,

.o-j x) X T P

- , -(-F ) Us Fswv r -t U Tr F, Z)Ts

*(v-35)

where

( X + ('Iy Fw3) Twl-- ( T, wr F, -z) T,

(v-36)

Comparison of Equation V-35 with V-3 gives the following definitions

of the coefficients,

STPZ k,

(V-37)

Equation for s Fluid

In all cases, the pertinent relation for T s  is Equation

8. Using the finite-difference representation of T/ g and substituting

Equations V-4 and V-23 for TV and Tsw, s in Equation 8, we

obtain the following expression:
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75 T b (Ur -) x, VFL
4 c~L, ) - DTs E as I/ "r - F,,

(v-38)

where

-l\O t U7 si Fr) I s~Js 'r .1Sc

VL-)+. FJ °W ,
k\ -4 s (V-39)

Using Equation V-2 to substitute for )TrixY in Equation V-38, gives

WS CC s U vx,L Qr) SY.

(Es -UT F <,L eQrI) + FwxL Pr 'r

(v-40)

Comparison of this relation with Equation V-1 yields the following

definitions of the coefficients,

Ds +IT5 F Rw, -x,L Q( i

.E UT, sF, ,L Q

UT,. ( + Fw IL ")d_sZ---

(v-4i)


